UNIT - 9 CHEMICAL KINETICS

Important Points

Chemical Kinetics: The branch of chemistry which deals with the study of the rate of reaction and the factor affecting them.

Kinetics - Greek word 'kinesis' = movement

- delassification of reaction on the basis of rates:
 - Very fast reaction : ionic reactions (10⁻⁹ sec)
 - very slow reaction : rusting of iron, radiation from uranium.
 - Slow reaction: reaction by combining dinitrogen and dihydrogen under certain conditions.
- ▲ Factors Affecting rates of Reaction:
 - (i) The state of substance and the area of surface
 - (ii) concentration of solution.
- (iii) temperature of system.
- (iv) Pressure of system
- (v) Effect of catalyst
- (vi) Presence of light

(If there is any impurity which tries to decrease the rate of reaction then it is called catalytic poison)

A Rate of Reaction:

The rate of reaction is the change in the concentration of any one of the reactants or products per unit time.

Average rate of reaction

$$rav = -\frac{\Delta[R]}{\Delta t} = +\frac{\Delta[P]}{\Delta t}$$

Instantaneous Rate of Reaction

rinst =
$$-\frac{d[R]}{dt}$$
 = $+\frac{d[P]}{dt}$ as $\Delta t \rightarrow 0$

Rate of reaction is always positive. The minus sign is used simply to show that the concentration of the reactant is decreasing.

A Rate determination:

In the reactions the stoichiometric coefficients may be different. Rate of reaction can be determined but the determination must be consistent. In chemical kinetics, the following method is accepted.

207

Rate =
$$-\frac{1}{V_R} \left[\frac{d[R]}{dt} \right] = +\frac{1}{vp} \left[\frac{d[P]}{dt} \right]$$

• For any reation $n_1A + n_2B \rightarrow n_3C + n_4D$

Rate =
$$-\frac{1}{n_1} \frac{d[A]}{dt} = -\frac{1}{n_2} \frac{d[B]}{dt} = \frac{1}{n_3} \frac{d[C]}{dt} = \frac{1}{n_4} \frac{d[D]}{dt}$$

$$5B^{r_{-}}{}_{(aq)} + BrO_{3}^{-}{}_{(aq)} + 6H_{(aq)}^{+} \rightleftharpoons 3Br_{2(aq)} + 3H_{2}O(\ell)$$

$$Rate = -\frac{1}{5} \frac{d \Big[Br^{-} \Big]}{dt} = -\frac{d \Big[BrO_{3}^{-} \Big]}{dt} = -\frac{1}{6} \frac{d \Big[H^{+} \Big]}{dt} = +\frac{1}{3} \frac{d \Big[Br_{2} \Big]}{dt}$$

• In aqueous solution, there is negligible change in concentration of water and so the change in its concentration is not expressed.

A Rate Law:

- The presentation of the rate of reaction with reference of concentration of reactants is called rate law.
- This rate law in the wide range of concentration of reactants or products is studied and the law that is established is called 'differential rate equation' or 'Rate expression'. Viz

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$
 Rate = $K[H_2][I_2]$

A Rate constant and order of Reaction:

• In most of the reaction carried out, the simple rate equation can be obtained in which rate is proportional to exponents of the concentration of reactant. The exponent is called order of reaction.

$$\begin{aligned} H_2 + I_2 &\rightarrow 2HI & \text{Rate } \alpha \big[H_2 \big] \big[I_2 \big] \\ & \therefore \text{Rate} = k \big[H_2 \big] \big[I_2 \big] \\ H_2 + Br_2 &\rightarrow 2HBr & \text{Rate } \alpha \big[H_2 \big] \big[Br_2 \big]^{\frac{1}{2}} \\ & \therefore \text{Rate} = K \big[H_2 \big] \big[Br_2 \big]^{\frac{1}{2}} \\ 2N_2O_5 &\rightarrow 4NO_2 + O_2 & \text{Rate } \alpha \big[N_2O_5 \big] \\ & \therefore \text{Rate} = K \big[N_2O_5 \big] \\ & \therefore \text{Rate} = K \big[N_2O_5 \big] \end{aligned}$$

- Where K is rate constant and it is called specific rate constant when concentration of reactant is 1 M. At that time reaction rate = rate constant.
- It is necessary to note that the order of reaction has no relation with the stoichiometric cofficient of reactant.
- For the reaction $n_1A + n_2B \rightleftharpoons n_3C + n_4D$
 - Rate = $k [A]^x [B]^y$
 - Order of reaction with reference to reactant A is x and with that of reactant B is y. Hence total order of reaction = x + y. Thus the total order of reaction is equal to the sum of exponents of concentration of all reactants.
 - $5Br^{-} + BrO_{3}^{-} + 6H^{+} \rightleftharpoons 3Br_{2} + 3H_{2}O$
 - Rate = $K [Br][BrO_3^-][H^+]^2$
 - Order of reaction = 1 + 1 + 2 = 4
 - The total order of reaction can be positive, zero or even a fraction
 - Examples of different order.
 - (I) $2NH_{3(g)} \xrightarrow{Mo} N_{2(g)} + 3H_{2(g)}$ Rate = $k[NH_3]^o$
 - (ii) $H_2O_2 \to H_2O + \frac{1}{2}O_2$ Rate = k[H_2O]

• (iii)
$$2NO_2 + F_2 \rightarrow 2NO_2 F$$
 Rate= $k[NO_2][F_2]$

• (iv)
$$2NO + O_2 \rightarrow 2NO_2$$
 Rate = $k[NO]^2[O_2]$

• (v)
$$CH_3CHO \rightarrow CH_4 + CO$$
 Rate=k[CH_3CHO]^{1.5}

• (vi)
$$CO + Cl_2 \rightarrow COCl_2$$
 Rate = $k[CO]^2 [Cl_2]^{1.5}$

▲ Unit of Rate constant

$$Rate = \frac{dx}{dt} = k (con)^{n}$$

$$\therefore K = \frac{dx}{dt} \times \frac{1}{(conc)^{n}} = \frac{conc}{time} \times \frac{1}{(conc)^{n}}$$

Order of reaction	Unit of K	
0	M s ⁻¹	Mole litre ⁻¹ time ⁻¹
1	s ⁻¹	time ⁻¹
2	M ⁻¹ S ⁻¹	litre mole ⁻¹ time ⁻¹
n	M ¹⁻ⁿ S ⁻¹	litre ¹⁻ⁿ mole ⁿ⁻¹ time ⁻¹

▲ Molecularity:

- The number of atoms, ions or molecules of the reactant that take part in the reaction and which experience collision with each other so that the reaction results, it is called molecularity
- Hence, the orders of reactions and molecularities of bimolecular, trimolecular and elementary reaction are same.
- The possibility of collision of three or more molecules with one another and to result in the reaction is less.

The molecularity more than three is not seen.

Molecularity	Order of the reaction
It is equal to the sum of the number of reactant particles taking part in a single step reaction	It is equal to the exponents of the molar concentration of the reactants in the experimentally determined rate equation.
It is always a whole number	It can be fractional
It cannot be zero	It can be zero
Molecularity applies to one step reaction or a single step of reaction which involves several steps for its completion. The molecularity of an overall complex or multistep reaction has no significance or meaning.	Order of reaction applies to a reaction as a wholes, irrespective of the intermediate steps involved for its completion.
It can be obtained from simple balanced equation for the single step reactions.	It cannot be obtained from a simple balanced equation. It is obtained only from experimentally determined rate equation.
It does not help in elucidation of reaction mechanism	It is helpful in the elucidation of reaction mechanism

- ▲ Zero order reaction :
 - The rate of the reaction is proportional to zero exponent of the concentration of reactant.

$$-\frac{-d[R]}{dt} = k[R]^{\circ} \qquad \qquad \therefore [R] = -K.t + [R]_{\circ}$$

• Graph of [R] versus t then straight line.

Slope =
$$-k$$
 and intercept = $[R]o$

- ▲ First order reaction:
 - The rate of the reaction is proportional to exponent one of concentration of reactant.

$$-\frac{d[R]}{dt} = k[R] kt = \ell n \frac{[R]_o}{[R]}$$

$$[R]=[R]_{o}.e^{-kt}$$

$$\log[R]_{t} = -\frac{K}{2.303}.t + \log[R]_{o}$$

• Graph of log[R], versus t then straight line.

Slope =
$$-\frac{K}{2.303}$$
 and intercept = $\log[R]_0$
 $t_{\frac{1}{2}} = \frac{0.693}{k}$

- A Pseudo unimolecular or Pseudo first order reaction:
 - Those reaction which are not truly of the first order but under certain conditions become reactions of the first order. Examples: (i) Hydrolysis of ethyl acetate. (ii) Hydrolysis of cane sugar.
- △ Determination of order of reaction :

Methods: (i) Intial rate method

- (ii) Integrated rate equation method or Graphical method
- (iii) Half life method
- (iv) Ostwald's isolation method
- △ Ostwald's Isolation method :
 - In certain reaction there is involvement of more than one reactants. In this method, the concentration of other reactants in comparison to one reactant is taken in very large proportion. The reaction rate will be indicative with respect to reactant with less concentration because the concentration of other reactants remain almost constant.
- ▲ Half life method:
 - The time taken for half of the reaction to complete.
 - It is very simple method.

- For zero order reaction $tq[R]_0$
- first order reaction $t\frac{1}{2}$ is independent of initial concentration
- second order reaction $t \frac{1}{2} \alpha [R]_0^{-1}$
- nth order reaction $t \frac{1}{2} \alpha [R]_0^{1-n}$ or $t \frac{1}{2} \alpha \frac{1}{[R]_0^{n-1}}$

Arrhenius equation:

$$K = A.e^{-Ea/RT} \qquad \qquad \therefore \ell nk = \ell nA - \frac{Ea}{RT}$$

$$\ell \log k = \ell \log A - \frac{Ea}{2.303R} \cdot \frac{1}{T}$$

Graph of log K versus $\frac{1}{1}$ = straight line

Slope=
$$-\frac{\text{Ea}}{2.303\text{R}}$$

$$log \frac{K_2}{K_1} = \frac{Ea}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right] = \frac{Ea.\Delta T}{2.303R.T_1.T_2}$$

▲ Threshold energy

- Arrhenius equation shows that rate constant increases exponentially with temperature.
- Increasing temperature from 300 to 310 K, the Kinetic energy increases only by 3% because it is proportional to temperature.
- The reaction rates have almost doubled by increase in temperature by 10 K.
- The explanation for this can be given that there must be some pushing energy or threshold energy required for the reaction of molecules.

▲ Arrhenius factors :

$$\triangleq$$
 Ea = N_A .E* where Ea = Activation energy

Na = Avogadro number

E* = Kinetic energy

$$K = Ae^{-Ea/RT}$$
 where A = pre-exponential factor or frequency factor

Ea = Energy of activation

Both A & Ea = Arrhenius factors

▲ Theory of collision:

- Max Trauz and William Lewis (1916-18) = Theory of collision.
- In Chemical reaction, the number of collision per second per unit volume is called collision frequency (z).

- For biomolecular reaction $A + B \rightarrow Products$
- Rate = $Z_{AB} \cdot e^{-Ea/RT}$
- Rate = $P \cdot Z_{AB} \cdot e^{-Ea/RT}$
- Z_{AB} = collision frequency of A and B whose energy is equal to or more than activation energy.
- P = Probability factor OR steric factor
- Those collision in which molecules collide with sufficient kinetic energy (threshold energy) and proper direction, resulting into products. Such collision are called effective OR fruitful collision.
- A Endothermic reaction and Exothermic reaction.
 - Minimum potential energy of reactants is less than that of products then the reaction will be the endothermic.
 - Minimum potential energy of reactants is more than that of products then the reaction will be exothermic.
 - Endothermic reation : $\Delta H = Hp-Hr = {}^{+}ve$
 - $\Delta H = Ea-Ea^r = +ve$ when $Ea > Ea^r$
 - Exothermic reaction : $\Delta H = Hp-Hr = ve$
 - $\Delta H = Ea Ea^r = -ve$ when $Ea < Ea^r$
 - Where Ea = activation energy of forward reaction

 Ea^{r} = activation energy of reverse reaction

▲ Effect of catalyst:

- The main function of catalyst is decrease the activation energy, bring energy barrier down and increases the rate of reaction.
- Equilibrium constant (K) is not changed.
- Rate of reaction increases.

M.C.Q.

			•	
1.	Rate of reation is defin	ned as		
	(a) decrease in the con	ncentration of a reactan	t	
	(b) increase in the con	centration of a product		
	(c) change in the conc	entration of any one of	the reactants or produc	cts per unit time.
	(d) all the above three	e are correct		
2.	$2A + B \rightarrow 3C$ for the	e reaction instant rate o	f reaction is	
	1 d[A] d[B]	1 d[C]	1 d[A] d[B]	1 d[C]
	(a) $+\frac{1}{2}\frac{d[A]}{dt} = +\frac{d[B]}{dt}$	$+\frac{1}{3}\frac{1}{dt}$	(b) $-\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt}$	$=+\frac{1}{3}\frac{1}{dt}$
	d[A] d[B]	d[C]	d[A] d[B]	d[C]
	(c) $+2\frac{d[A]}{dt} = +\frac{d[B]}{dt}$	$=+3\frac{dt}{dt}$	$(d) -2\frac{d[A]}{dt} = -\frac{d[B]}{dt}$	$=+3\frac{dt}{dt}$
3.	The rate of reaction of	spontaneous reaction is	s generally very slow. The	his is due to the fact that
	(a) the equilibrium con	nstant of the reaction is	< 1	
	(b) the activation energy	gy of the reaction is lar	ge	
	(c) the reaction are exc	othermic		
	(d) the reaction are end	dothermic		
4.	$N_2 + 3H_2 \rightleftharpoons 2NH_3 H$	For the reaction the rate	of change of concentra	ation for hydrogen is -0.3
		f change of concentrati		
		the state of the s	(c) 0.1×10^{-4}	
5.	For the reaction of 4A	$A + B \rightarrow 2C + D$. Which	ch of the following stat	tement is not correct?
		cion of C and D are equi		
	(b) The rate of format	ion of D is one half the	rate of consumption o	fA
			he rate of disappearance	
			urth of the rate of disag	ppearance of A
6.	does not affect	ct the rate of reaction.		
	(a) size of the vessel		(b) amount of the reac	etants
	(c) physical state of re		(d) ΔH of reaction	
7.	In the reaction $N_2O_{4(g)}$	$_{\rm g} \rightarrow 2{\rm NO}_{2({\rm g})}$ the pressu	re of N ₂ O ₄ falls from 0	0.5 atm to 0.32 atm is 30
	minutes, the rate of a	opearance of $NO_{2(g)}$ is	() 2 2 2 2 1	(1) 0.000
	(a) 0.012 atm min ⁻¹		(c) 0.006 atm min ⁻¹	
8.	In the reaction K_1 and respectively. The equili		onstants for the forward	d and backward reaction
	$(\cdot) \times K_1 /$	(L) V VV	(a) K K ₂ /	(4) 641 1
	(a) $K = {}^{1}\!\!/ K_2$	(b) $K = K_1 \times K_2$	(c) $K = \frac{2}{K_1}$	(d) none of the above
9.	For the reaction A +	$B + C \rightarrow Products, Ra$	ate = $K[A]^{\frac{1}{2}}[B]^{\frac{1}{3}}[C]$.	The order of reaction is
	() a	4.	. 5/	11/
	(a) 3	(b) 1	(c) $\frac{5}{6}$	(d) $\frac{11}{6}$
10.	For a reaction $pA + c$	$qB \rightarrow Products. Rate =$	$= K[A]^m[B]^n$. Then	
	(a) $(p+q) = (m+n)$		(b) $(p+q) \neq (m+n)$	
	(c) $(p+q) > (m+n)$		(d) $(p+q) = (m+n)$ or	$(p+q) \neq (m+n)$
	- · · ·			

11.	$A + 2B \rightarrow C + D F$	or a reaction from foll	owing data correct rat la	aw =
	Mole	liter ⁻¹		
	(A)	(B)	mole lite-1 min-1	
	1 0.1	0.1	6.0×10^{-3}	
	2 0.3	0.2	7.2×10^{-2}	
	3 0.3	0.4	2.88×10^{-1}	
	4 0.4	0.1	2.4×10^{-2}	
	(a) Rate = $K [A]^2 [B]$]	(b) Rate = $K [A]^2 [B]$	$]^2$
	(c) Rate = $K[A][B]^2$	2	(d) Rate = $K[A][B]$	
12.			ing of [A], increases the action rate. The rate expand	reaction rate to four times, ression is
	(a) Rate = $K [A]^2$	(b) Rate = $K[A]$	(c) Rate = $K [A]^2[B]$	$]^{2}$ (d) Rate = K [A][B]
13.	A zero order reaction	is one whose rate is i	ndependent of	
	(a) Reaction vessel vo	lume	(b) Concentration of r	reactants
	(c) temperature	_	(d) pressure of light	
14.	The rate constant of	a reaction changes who	en	
	(a) pressure is change	ed	(b) concentration of re	eactants changed
	(c) temperature is cha		(d) a catalyst is added	d
15.	Which of the following	ng is a reaction of zero	order ?	>
	(a) $H_2 + Cl_2 \xrightarrow{h9} 2$	CHCI S	(b) $2N_2O_5 \rightarrow 4NO_2 +$ (d) $H_2 + Br_2 \rightarrow 2HBr$	$-O_2$
	(c) $2HI \rightarrow H_2 + I_2$		(d) $H_2 + Br_2 \rightarrow 2HBr$	>
16.		ng is a reaction of fract	2000000000000	
	(a) $2N_2O_5 \rightarrow 4NO_2$	$+O_2$	(b) $2NO_2 + F_2 \rightarrow 2NO_2$	_
	(c) $H_2 + Br_2 \rightarrow 2HBr$		(d) $2NO + O_2 \rightarrow 2NO$	\mathbf{D}_2
17.	A reaction involving	two different reactants	can never be a	
	(a) bimolecular reaction	on	(b) Unimolecular react	ion
	(c) first order reaction	1	(d) second order reac	tion
18.	For a reaction 3A ηP	Products, the order of a	reaction	
	(a) 3		(b) 1, 2 or 3	
	(c) zero		(d) any value between	n 1 and 3
19.	When concentration of reaction is	of reactant is increased	eighteen times the rate be	ecomes two times, the rate
	(a) 1	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) $\frac{1}{4}$
20.	The rate determining make the reaction rat		$-2B \rightarrow C$. Doubling the	concentration of B would
	(a) two times	(b) same rate	(c) four times	(d) $\frac{1}{4}$ times

	(a) x^3	(b) 8x	(c) $4x^2$	(d) 9x
22.		$CH_3COCH_3 + I_2 + I_3$ I^+]. The rate order of		rate is governed by, rate =
	(a) 3	(b) 2	(c) 1	(d) O
23.	If the order of reac	ction is zero. It means	that	
	(a) rate of reaction	is independent of tem	perature	
	(b) rate of reaction	is independent of the	concentration of the rea	cting species
	(c) the rate of form	nation of activated com	nplex is zero	
	(d) the rate of deco	omposition of activated	d complex is zero	
24.	The reactions of h	igher order are rare be	cause	
	(a) many bady coll	isions involve very high	n activation energy	
	(b) many bady col	lisions have a low prob	pability	
	(c) many bady coll	isions are not energetic	ally favoured	
	(d) many bady col	lisions can take place of	only in the gaseous phas	se.
25.	$2A + 2B \rightarrow D + E$	For the reaction follow	wing mechanism has be	en proposed.
	$A + 2B \rightarrow 2C + I$		$A + 2C \rightarrow E$ (Fa	st)
	The rate law expre	ssion for the reaction	is	
	(a) rate = $K [A]^2$	$[B]^2$	(b) rate = $K [A]^2$	[B] ² [C]
	(c) rate = $K[A][I]$	$[3]^2$	(d) rate = K [A][B]
26.	$A_2 + B_2 \rightarrow 2 AB 1$	reaction follow the me	chanism as given below	
	(i) $A_2 \rightarrow 2A$ (fast			
	(ii) $A + B_2 \rightarrow AB$	s + B (slow)		
	$(iii) A + B \rightarrow AB$	(fast) the order of over	erall reaction is	
	(a) 1.5	(b) 2	(c) 0	(d) 1
27.	In the sequence of reaction is	reaction $A \xrightarrow{K_1}$, B	$K_2 \rightarrow C \xrightarrow{K_3} \text{ then then the sum of } K_2 \rightarrow C \xrightarrow{K_3} \text{ then the sum of } K_3 \rightarrow C \xrightarrow{K_3} then $	ne rate of determining step of
	(a) $A \rightarrow B$	(b) $B \rightarrow C$	(c) $C \rightarrow D$	(d) $A \rightarrow D$
28.		$A + B \rightarrow Products$, read alved the rate of reaction		Concentration of A is doubled
	(a) doubled	(b) halved	(c) unaffected	(d) four times
29.		centration of reaction A f the reaction would b		es, the rate increases only two
	(a) 2	(b) 4	(c) $\frac{1}{2}$	(d) $\frac{1}{4}$
30.			ntration of A is changed The order of reaction v	from 0.1 M to 1 M, the rate with respect to A is
	(a) 10	(b) 1	(c) 2	(d) 3

The rate law of a reaction is rate = $K[A]^2[B]$. On doubling the concentration of both A and B the rate X will become ...

21.

31.	the reaction rate by 8	,	initial concentration of o	oth the reactants increases only B simply doubles the			
	(a) $r = K [A][B]^2$	(b) $r = K [A][B]$	(c) $r = K [A]^{\frac{1}{2}}[B]$	(d) $r = K [A]^2[B]$			
32.	The unit of rate cons	tant for a zero order rea	action is				
	(a) litre sec ⁻¹	(b) litre mole-1 sec-1	(c) mole litre ⁻¹ sec ⁻¹	(d) mole sec ⁻¹			
33.	The rate constant of	a reaction has same uni	ts as the rate of reaction	n. The reaction is of			
	(a) third order	(b) second order	(c) first order	(d) zero order			
34.	The rate constant of	reaction is 3×10^{-3} bar	-1 sec-1. The order of 1	reaction is			
	(a) 1	(b) 2	(c) 3	(d) 0			
35.	The dimensions of th	e rate constant of a third	d order reaction involve				
	(a) only time		(b) time and concentra	ation			
	(c) time and square o	f concentration	(d) only concentration				
36.	The rate constant of	reaction is 5×10^{-2} litre	³ mole ⁻³ minite ⁻¹ . The o	order of reaction is			
	(a) 1	(b) 2	(c) 3	(d) 4			
37.	Which of the following	ng statements is incorrec	t about the molecularity	of a reaction?			
	(a) Molecularity of a reaction is the number of molecules in the slowest step.						
	(b) Molecularity of a equation.	reaction is the number o	f molecules of the reacti	on present in the balanced			
	(c) There is no differ	ence between order and	molecularity of a react	ion.			
	(d) Molecularity is al-	ways a positive whole n	umber.				
38.	For a single step reac	ction A + 2B \rightarrow Product	ts, the molecularity is				
	(a) zero	(b) 1	(c) 2	(d) 3			
39.	Which of the following	ng statement is false?					
	(a) For a zero order reaction, the rate changes with temperature.						
	(b) Both order and molecularity of a reaction are always the same.						
	(c) Active mass of 12	28 g of HI present in a	two litre flask is 0.5.				
	(d) For the first order halved.	r reaction, the rate of re	eaction halved as the co	oncentration of a reactant			
40.	If 'a' is the initial concentration of the reactant, the time taken for completion of the reaction, it if is of zero order, will be						
	/ 2u	/ 2K	(c) $\frac{a}{k}$	(d) $\frac{k}{a}$			
41.	The reaction $2O_3 \rightarrow$	$3O_2$ proceeds in two st					
	(i) $O_3 \rightleftharpoons O_2 + O$ (fast)	(ii) $O + O_3 \rightarrow 2O_2$	(slow)			
	The rate law expressi						
	$(a) r = K[O_3]^2$	(b) $r = K[O_3]^2[O_2]^{-1}$	(c) $r = K[O_3][O_2]$	(d) $r = K[O_3]^2[O_2]^1$			
42.	For reaction of zero						
	(a) $K = [Ao]/t$	(b) $Kt = [A] - [Ao]$	(c) $Kt = [A] - [Ao]$	(d) $K = \frac{2.303}{t} \ell n \frac{[Ao]}{[A]}$			

43.	For reaction first orde	er is		
	(a) $t = K \times 2.303 \log \frac{1}{A}$	<u>A]</u> A]o	(b) $K = \frac{2.303}{t} \log \frac{[A]}{[A]}$	_)
	(c) $[A]=[A]_0$ $.e-Kt$		(d) $K = \frac{2.303}{t} \log \frac{a}{a+x}$	-
44.	For the reaction Zero	order		
	(a) $t_{\frac{1}{2}} \alpha \operatorname{Co}^2$	(b) $t_{\frac{1}{2}} \alpha \sqrt{Co}$	(c) $t_{\frac{1}{2}} \alpha \text{ Co}^{-1}$	(d) $t_{\frac{1}{2}} \alpha Co$
45.	For reaction first order	r		
	(a) $t_{\frac{1}{2}} = \frac{0.693}{k}$	(b) $t_{\frac{1}{2}} = \frac{0.693}{\text{Co}}$	(c) $t_{\frac{1}{2}} \alpha \frac{0.693}{k}$	(d) $t_{\frac{1}{2}} \alpha \frac{0.693}{\text{Co}}$
46.	Which of the followin	g represents the express	sion for 3/4th life of a firs	t order reaction
	(a) $\frac{k}{2.303} log \frac{4}{3}$	(b) $\frac{2.303}{k} log \frac{3}{4}$	(c) $\frac{2.303}{k} \log 4$	(d) $\frac{2.303}{k} log 3$
47.	is		nalf reaction is also doub	oled. The order of reaction
		(b) Second		(d) Zero
48.	If a is the initial concer is proportional to	ntration of the reactant, t	the half life period of the	e reaction of the n th order
	(a) a^{n+1}	(b) a ¹⁻ⁿ	(c) a ⁿ	$(d) a^{n-1}$
49.	For the first order rearreduce to $^{1}/_{8}$ th of its v		The time required for th	e initial concentration to
	(a) 28 s	(b) 42 s	(c) $(14)^2$ s	(d) $(14)^3$ s
50.	In the first order reacting half life period of the		the reactants is reduced	to 25% in one hour. The
	(a) 120 min	(b) 4 hr	(c) 30 min	(d) 15 min
51.		etion with half life is 150 m m/10 to m/100 will be		n for the concentration of
	(a) 600 s	(b) 900 s	(c) 500 s	(d) 1500 s
52.	The half life period of a hour will be	a first order reaction is 1.	5 minutes. The amount of	of substance left after one
	(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	(c) $\frac{1}{8}$	(d) $\frac{1}{16}$
53.	For the reaction N ₂ O ₅ grams of N ₂ O ₅ will re	$_5 \rightarrow 2NO_2 + \frac{1}{2}O_2 t_{\frac{1}{2}} =$ main after a period of 9	24 hrs. starting with 196 hours?	0 g of N ₂ O ₅ how many
	(a) 0.63 g	(b) 0.5 g		(d) 1.25 g
54.	In the first order react of reaction.	tion 75% of reactant dis	appeared in 1.386 h. Ca	alculate the rate constant
	(a) $3.6 \times 10^{-3} \text{ S}^{-1}$	(b) $2.8 \times 10^{-4} \text{ S}^{-1}$	(c) $17.2 \times 10^{-3} \text{ S}^{-1}$	(d) $1.8 \times 10^{-3} \text{ S}^{-1}$

55.	The minimum amount	of energy required for th	e reacting molecules to u	undergo reaction is called:		
	(a) potential energy	(b) internal energy	(c) activation energy	(d) threshold energy		
56.	Increase in the concer	ntration of the reactants	leads to the change in			
	(a) heat of reaction	(b) threshold energy	(c) collision energy	(d) activation energy		
57.	Energy of activation	of an exothermic reactio	n is			
	(a) zero		(b) negative			
	(c) positive		(d) can not be predicate	nted		
58.	The chemical reactions	s in which reactants requ	ire high amount of activ	ation energy are generally		
	(a) slow	(b) fast	(c) instantaneous	(d) spontaneous		
59.		icreases with increase of	<u> </u>			
	` '	number of activated mol	lecules			
	(b) an increase in the					
	(c) lowering of thresho					
	(d) activation energy i					
60.		of reaction is equal to				
	(a) Threshold energy + Energy of the products					
(b) Threshold energy - Energy of the reactants						
		+ Energy of the reactant				
		- Energy of the product				
61.	Collision theory is mo		reaction.			
	(a) First order			(d) Any		
62.	If E_f and E_r are the acknown to be exotherm		forward and reverse rea	ctions and the reaction is		
	(a) $E_f < E_r$	(b) $E_f > E_r$	(c) $E_f >>> E_r$	(d) $E_f = E_r$		
63.	Which of the following	ng does not affect the ra	ate of reaction?			
	(a) size of the vessel		(b) physical state of re	eactants		
	(c) amount of the read	etants	(d) ΔH of reaction			
64.			the enthalpy of reaction	. The minimum value for		
	the energy of activation					
	(a) equal to ΔH	(b) zero	(c) more than ΔH			
65.		eaction $A \rightarrow B$. An active 5 Kcal mole ⁻¹ . The active	0,5	I mole ⁻¹ and the enthalpy action $B \to A$ is		
	(a) 10 Kcal mole ⁻¹	(b) 20 Kcal mole ⁻¹	(c) 15 Kcal mole ⁻¹	(d) zero		
66.		action an activation energe-1. The activation energ		d the enthalpy change of ion is		
	(a) 70 KJ mole ⁻¹	(b) 30 KJ mole ⁻¹	(c) 40 KJ mole ⁻¹	(d) 100 KJ mole ⁻¹		
67.	The rate constant of t	he reaction increases by	<i></i>			
	(a) increasing the temp	perature	(b) increasing the conc	entration of reactants		
	(c) carrying out the re	action for longer period	(d) adding catalyst			

68.	Which of the following	g is the expression for A	Arrhenius equation ?	
	(a) $\ell n \frac{k_2}{k_1} = \frac{Ea}{R} \left(\frac{1}{T_1} - \frac{1}{T_1} \right)$	$\left(\frac{1}{\Gamma_2}\right)$	(b) $\ln k = \ln A - \frac{Ea}{R}$	Γ
	(c) $k = A.e^{-Ea/RT}$		(d) All the above	
69.	The Plot of log K vs	$\frac{1}{T}$ helps to calculate		
	(a) Activation energy		(b) Rate constant	
	(c) Reaction order		(d) Activation energy a	and frequency factor
70.	At 290 K velocity co	nstant of a reaction wa	s found to be 3.2×10	r ³ . At 300 K, it will be
	(a) 1.6×10^{-3}	(b) 6.4×10^{-3}	(c) 3.2×10^{-4}	(d) 3.2×10^{-2}
71.	The increase in reaction	on rate as a result of te	emperature rise from 10) K to 100 K is
	(a) 512	(b) 614	(c) 400	(d) 112
72.	At 300 K rate constant The activation energy of		eaction. Bt at 320 K rate	constant is 0.0693 min ⁻¹ .
	(a) 84 KJ mole ⁻¹	(b) 34.84 KJ mole ⁻¹	(c) 43.84 KJ mole ⁻¹	(d) 30 KJ mole ⁻¹
73.		of a reaction is 9 Kcal r from 295 to 300 K is ap		he rate constant when its
	(a) 1.289 times	(b) 12.89 times	(c) 0.1289 times	(d) 25%
74.	A reactant A forms tw	o products.	1100	
	(i) A $\xrightarrow{k_1}$ B activat	ion energy E ₁		>
	(ii) A $\xrightarrow{k_2}$ C activa	tion energy E ₂		
	If $E_2 = 2E_1$ then K_1 ,	800		
	(a) $K_2 = K_1.e^{\frac{E_1}{RT}}$	(b) $K_2 = K_1.e^{\frac{E_2}{RT}}$	(c) $K_1 = AK_2 \cdot e^{E_1}/RT$	(d) $K_1 = 2K_2.e^{\frac{E_2}{RT}}$
75.	is increased from T ₁ to	T_2 , the rate constant or	f the reaction changes fr	emperature of the system rom K_1 to K_2^{-1} in the first rng expression is correct?
	(a) $\frac{k_1^1}{k_1} > \frac{k_2^1}{k_2}$	(b) $\frac{k_1^1}{k_1} < \frac{k_2^1}{k_2}$	(c) $\frac{k_1^1}{k_1} = \frac{k_2^1}{k_2}$	(d) $\frac{k_1^1}{k_1} = \frac{k_2^1}{k_2} = 0$
76.	The rate of reaction 2 order of the reaction is		$e = K[x]^2[y]$. If x is pre-	esent in large excess, the
	(a) 3	(b) 2	(c) 1	(d) 0
77.	CH,COOEt + H,O -	H+ CH ₃ COOH + E	Et OH. Order of reaction	on is
	(a) 0	(b) 1	(c) 2	(d) 3
78.		ring cases, does the reac		` '
	(a) $K = 100$	(b) $K = 10^{-2}$		(d) $K = 1$
		-	•	< /

79.	The activation energy	of a reaction is zero. T	he rate constant of the	reaction
	(a) increase with incre	ase of temperature	(b) decrease with incre	ease of temperature
	(c) decrease with decr	rease of temperature	(d) is nearly independe	ent of temperature
80.	Which of the followin	g is the fast reaction?		
	(a) $H_2 + Cl_2 \xrightarrow{H_2O} 2$	HCl	(b) $NO_2 + CO \rightarrow NO$	+CO ₂
	(c) $CH_3CHO \rightarrow CH_4$	+CO	(d) $6CO_2 + 6H_2O_{-}$	$C_6H_{12}O_6 + 6O_2$
81.	Oxidation of oxalic ac of the following?	id by acidified KMnO ₄	is an example of autoca	talysis. It is due to which
	(a) SO_4^{2-}	(b) MnO_4^{2-}	(c) Mn ²⁺	(d) K ⁺
82.		r of the reaction if doub and trebling the concen	•	of a reactant increases the by a factor of 9?
	(a) 1	(b) 2	(c) 3	(d) 0
83.	•	particular reaction is four eactants then reaction is		independent of the initial
	(a) 1	(b) 2	(c) 3	(d) 0
84.	The rate of reaction A excess, the order of the		s given by $r = K[A][B]^0$	[C]. If A is taken in large
	(a) 0	(b) 1	(c) 2	(d) nil
85.	Rate of chemical reac	tion can be kept constant	The Party of the P	>
	(a) by stirring the com	ponents	(b) by keeping the tem	
	(c) both of the above		(d) none of the above	
86.	The one which is unin	nolecular reaction is		
	(a) $HI \rightarrow \frac{1}{2}H_2 + \frac{1}{2}I_2$		(b) $N_2O_5 \to N_2O_4 + \frac{1}{2}$	$-\mathbf{O}_2$
	(c) $H_2 + Cl_2 \rightarrow 2HCl$		(d) $PCl_3 + Cl_2 \rightarrow PCl_5$	
87.	For the reaction $H_{2(g)}$	$+ Br_{2(g)} \rightarrow 2HBr_{(g)}$ the	experimental data sugg	gests, rate = $K[H_2][Br_2]^{\frac{1}{2}}$.
	(0)	order of reaction respec		
	(a) 2, 2	(b) $2, 1\frac{1}{2}$	(c) $1\frac{1}{2}$, 2	(d) $1\frac{1}{2}$, $1\frac{1}{2}$
88.	$= K[Cl_3 C CHO][NO]$	or Cl ₃ C CHO + NO –]. If concentration is ex (b) mole litre ⁻¹ sec ⁻¹	apressed in mole litre-1,	
89.	For a reaction 2A + 1 doubled. The rate of reaction 2A + 1		ve mass of B is kept of	constant and that of A is
	(a) increase two times		(b) increase four times	.
	(c) decrease two times	S	(d) decrease four time	S
90.		→ B follows second ordermation B by a factor of		ne concentration of A will
	(a) ½	(b) 2	(c) ½	(d) 4

91.	Ethyl acetate is hydrorespectively	olysed in alkaline medi	um, its order of a react	tion and molecularity are
	(a) 1, 1	(b) 1, 2	(c) 2, 1	(d) 2, 2
92.	According to the Arrhothe rate constant of a		line is to be obtained by	y plotting the logarithm of
	(a) T	(b) log T	(c) 1/T	(d) log 1/T
93.	The given reaction 2FeCl	$_3 + SnCl_2 \rightarrow 2FeCl_2$	+SnCl ₄ is an example	of reaction
	(a) first order	(b) second order	(c) third order	(d) none of these
94.	In the reverable react	ion $2NO_2 \stackrel{K_1}{\longleftarrow} N_2O$, the rate of disappear	rance of NO ₂ is equal to
	(a) $\frac{2K_1}{K_2} [NO_2]^2$		(b) $2k_1 [NO_2]^2 - 2k_2$	$[N_2O_4]$
	(c) $2k_1 [NO_2]^2 - k_2 [NO_2]^2$	N_2O_4	(d) $(2k_1 - k_2)[NO_2]$	
95.	If concentration of rea	actants is increased by	'x', then rate constant I	K becomes
	(a) $ln\frac{k}{r}$	(b) $\frac{k}{y}$	(c) k+x	(d) k
96.	The rate constant is g for the reaction to pro	oceed more rapidly?	un B	hould register a decrease
	(a) E	(b) T	(c) Z	(d) P
97.	For the reaction A +	$B \xrightarrow{k} C$. the unit of	f rate constant is	
	(a) sec ⁻¹	(b) sec ⁻¹ mole L ⁻¹	(c) sec ⁻¹ mole ⁻¹ L	(d) sec ⁻¹ mole ⁻² L ²
98.			K[A][B]. The volume of rate of reaction would	of the vessel is suddenly d be
	(a) $\frac{1}{16}$	(b) $\frac{16}{1}$	(c) $\frac{1}{9}$	(d) $\frac{8}{1}$
		1	8	1
99.	_	→ Product, rate control ate of reaction will be	olling step is $Y + \frac{1}{2}Z -$	→ Q. If the concentration
	(a) remain the same		(b) become four times	
	(c) become 1.414 tim	es	(d) become double	
100.				ne concentration of A and er rate of the reaction will
		4.	() 2(n m)	(d) $\frac{1}{2(m+n)}$
	(a) m+n	(b) n-m	(c) 2 ^(n-m)	(d) $2(m+n)$
101.	of the reactant A is 2		e does it take for its cor	en the initial concentration ncentration to come from
	(a) 0.25 h	(b) 1 h	(c) 4 h	(d) 0.5 h

- 102. For a first order reaction $A \rightarrow Products$, the concentration of A changes from 0.1 M to 0.025 M in 40 minutes. The rate of reaction when the concentration of A is 0.01 M is
 - (a) $1.73 \times 10^{-4} \text{ M min}^{-1}$

(b) $1.73 \times 10^{-5} \text{ M min}^{-1}$

(c) $3.47 \times 10^{-4} \text{ M min}^{-1}$

- (d) $3.47 \times 10^{-5} \text{ M min}^{-1}$
- 103. In the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$, initial pressure is 500 atm and rate constant K is 3.38 $10^{-5}~\text{sec}^{-1}$. After 10 minutes the final pressure of N_2O_5 is
 - (a) 490 atm
- (b) 250 atm
- (c) 480 atm
- (d) 420 atm
- 104. The half life period of a first order reaction is 6.93 minutes. The time required for the completion of 99% of chemical reaction will be
 - (a) 230.3 min
- (b) 23.03 min
- (c) 46.06 min
- (d) 460.6 min
- 105. The rate constants K_1 and K_2 for two different reactions are 10^{16} .e- $^{2000/T}$ and 10^{15} .e- $^{1000/T}$ respectively. The temperature at which $K_1 = K_2$ is
 - (a) 1000 K
- (b) $\frac{2000}{2.303}$ k
- (c) 2000 K
- (d) $\frac{1000}{2303}$ k

ANSWER KEY

1	_ c	26	a	51	c	76	C	101	a
2	b	27	С	52	d	77	b	102	c
3	b	28	b	53	a	78	a	103	a
4	a	29	d	54	b	79	d	104	c
5	С	30	c	55	d_	80	d	105	d
6	d	31	d	56	c	81	C		
7	a	32	С	57	c	82	b		
8	a	33	d	58	a	83	a		
9	d	34	b	59	a	84	b		
10	d	35	c	60	b	85	d		
11	c	36	d	61	c	86	b		
12	a	37	С	62	a	87	b		
13	b	38	d	63	d	88	c		
14	С	39	b	64	С	89	b		
15	a	40	c	65	a	90	d		
16	c	41	b	66	d	91	d		
17	b	42	b	67	a	92	c		
18	d	43	С	68	d	93	С		
19	c	44	d	69	d	94	b		
20	С	45	a	70	b	95	d		
21	b	46	c	71	a	96	a		
22	d	47	d	72	c	97	c		
23	b	48	b	73	a	98	b		
24	b	49	b	74	c	99	c		
25	c	50	c	75	a	100	c		

Hints

1. Defination of the rate of reaction

2.
$$-\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt} = +\frac{1}{3}\frac{d[C]}{dt}$$

- 3. the activation energy of the reaction is large
- 4. 0.2×10^{-4}

$$\frac{d[H_2]}{dt} = -0.3 \times 10^{-4} \text{Ms}^{-1} \text{ But } \text{Rate} = -\frac{1}{3} \frac{d[H_2]}{dt} = +\frac{1}{2} \frac{d[NH_3]}{dt}$$

Hence
$$\frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt} = -\frac{2}{3} (-0.3 \times 10^{-4}) = 0.2 \times 10^{-4}$$

5.
$$\therefore -\frac{1}{4} \frac{d[A]}{dt} = -\frac{d[B]}{dt} = +\frac{1}{2} \frac{d[C]}{dt} = +\frac{d[D]}{dt}$$

- 6. ΔH of reaction
- 7. $0.012 \text{ atm min}^{-1}$

$$-\frac{d[N_2O_4]}{dt} = +\frac{1}{2}\frac{d[NO_2]}{dt}$$

$$-\frac{(0.32-0.50)}{30} = 0.006 = \frac{1}{2} \frac{d[NO_2]}{dt} \qquad \therefore \frac{d[NO_2]}{dt} = 0.012 \text{ atm min}^{-1}$$

- 8. $K = K_1/K_2$
- 9. $\frac{1}{6}$ Rate = $k[A]^{\frac{1}{2}}[A]^{\frac{1}{3}}[c]^{\frac{1}{3}}$. Order of reaction = $\frac{1}{2} + \frac{1}{3} + \frac{1}{1} = \frac{11}{6}$
- 10. $(p+q) = (m+n) \text{ or } (p+q) \neq (m+n)$
- 11. Rate = $K[A][B]^2$

Keeping [B] constant, [A] is made a 4 times, rate also become 4 times. Hence rate α [A] Keeping [A] constant, [B] is doubled, rate becomes 4 times. Hence rate α [B]²

$$\therefore$$
 rate = $K[A][B]^2$

- 12. rate = $K[A]^2$
 - [A] doubling, rate becomes four time. Hence rate α [A]²
 - [B] doubling, no effect on the rate. Hence rate $\alpha\ [B]^0$

$$\therefore \text{ rate } = K[A]^2[B]^0$$

- 13. concentration of reactants
- 14. temperature is changed
- 15. $H_2 + Cl_2 \xrightarrow{hv} 2HCl$
- 16. $H_2 + Br_2 \rightarrow 2HBr$

- 17. Unimolecular reaction
- 18. any value between 1 and 3

19.
$$\frac{1}{3}$$
 $\frac{k_2}{k_1} = \left[\frac{A_2}{A_1}\right]^n \text{ Or } 2 = (8)^n : n = \frac{1}{3}$

- 20. four times : $rate a [B]^2$
- 21. $8x V_1 = k[A]^2[B] = x V_2 = k[2A]^2[2B] : V_2 = 8x$
- 22. OO :: No I_2 in the rate law equation.
- 23. rate of zero order reaction is independent of the concentration of the reacting species
- 24. many bady collisions have a low probability
- 25. rate = $K[A][B]^2$ Rate of reaction for slowest step
- 26. 1.5 From slowest step rate = $k[B_2][A]$ From 1st eq. $Keq = [A] \frac{2}{[A_2]} : [A] = keq^{\frac{1}{2}} . [A_2]^{\frac{1}{2}}$ rate = $K[B_2] keq^{\frac{1}{2}} \cdot [A_2]^{\frac{1}{2}} = k \cdot keq^{\frac{1}{2}} [A_2]^{\frac{1}{2}} [B_2] = K^1 [A_2]^{\frac{1}{2}} [B_2]$
- 27. $C \rightarrow D$ is lowest
- 28. halved $\operatorname{rate} = k[A][B]^{2} \operatorname{rate} = k[2A] \left[\frac{B}{1} \right]$ $= \frac{1}{2} k[A][B]^{2}$ $\therefore x'' = \frac{1}{2} x'$
- 29. $\sqrt[1]{4}$ (1) $r = k[A]^n$ (2) $2r = k[16A]^n$ $2r = K[A]^n 16^n$ $\frac{2r}{r} = \frac{K[A]^n 6^n}{K[A]^n} \therefore 2 = 16^n \therefore n = \frac{1}{4}$
- 30. 2 cocentration increased = 10 times rate increased = 10² times
 ∴ Order = 2
- 31. $r = K [A]^{2}[B]$ $(i) r = k[A]^{x}[B]^{y}$ $(ii) 8r = k[2A]^{x}[2B]^{y}$ $(iii) 2r = k[A]^{x}[2B]^{y}$ $(iii) \div (i) \approx 2^{y} = 2 \therefore y = 1$ $(ii) \div (i) \approx 2^{x} = 4 \therefore x = 2$

32. mole litre⁻¹ sec⁻¹ rate=
$$K[R]^n$$
, $K = \frac{\text{rate}}{[R]^n} = \frac{M/s}{M^n} n = 0$

$$K = M^{1-n} S^{-1} : K = \frac{M}{S}$$

33. zero order
$$K = \frac{\text{rate}}{[R]^n} K = \text{rate}$$
, when $n = 0$

34.
$$2 ext{ } ext{K} = \frac{\text{rate}}{\left[R\right]^n} = \frac{\text{bar/s}}{\text{bar}^n} \text{ when } n = 2 ext{ } ext{k} = \text{bar}^{-1} \text{ S}^{-1}$$

35. time and square of concentration

$$K = \frac{\text{rate}}{[R]^n} = \frac{M/S}{M^n} = M^{1-n}S^{-1}\text{when } n = 3$$
 $k = \text{litre}^3 \text{ mole}^{-1} \text{ min}^{-1}$

36.
$$4 \text{ K} = \frac{\text{rate}}{[R]^n} = \frac{M/S}{M^n} = M^{1-n}S^{-1}\text{when } n = 4 \text{ k} = \text{liter}^3 \text{ mole}^{-3} \text{ min}^{-1}$$

- 37. There is no difference between order and molecularity of a reaction.
- 38. 3
- 39. Both order and molecularity of a reaction are always the same.

40.
$$a/k$$
 For Zero order reaction $t = \frac{1}{k} \{ [A]_o - [A] \} But [A]_o = a$

And when reaction complete
$$[A]=0$$
: $t=\frac{a}{k}$

41.
$$r = k[O_3]^2[O_2]^{-1}$$
 From Slowest step $r = k[O_3][O]$

From eq (i)
$$keq = [O_2][O]/[O_3]$$

$$\therefore [O] = Keq[O_3]/[O_2],$$

$$\therefore r = k [O_3] Keq[O_2] = K^1 [O_3]^2 [O_2]^{-1}$$

42.
$$Kt = [Ao] - [A]$$

43.
$$[A] = [A]_0 .e^{-kt}$$

$$44. \qquad t_{\frac{1}{2}} \, \alpha \, C_o$$

45.
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

46.
$$t_{\frac{3}{4}} = \frac{2.303}{k} log \frac{ao}{ao - ao \times \frac{3}{4}} = \frac{2.303}{k} log \frac{ao}{\frac{ao}{\frac{ao}{4}}}$$

- 47. Zero For Zero order reaction $t_{\chi} \alpha C_{o}$
- 48. $a^{1-n} t_{1/2} \alpha a^{1-n}$

49. 42 S
$$Ao \xrightarrow{t\frac{1}{2}} \frac{Ao}{2} \xrightarrow{t\frac{1}{2}} \frac{Ao}{4} \xrightarrow{t\frac{1}{2}} \frac{Ao}{8} : 3 \times t_{\frac{1}{2}}$$

50. 30 min
$$100\% \xrightarrow{t\frac{1}{2}} 50 \xrightarrow{t\frac{1}{2}} 25\% \therefore T = 2 \times t\frac{1}{2} \therefore t\frac{1}{2} = \frac{T}{2}$$

51. 500S
$$\frac{M}{10} \xrightarrow{t\frac{1}{2}} \frac{M}{20} \xrightarrow{t\frac{1}{2}} \frac{M}{40} \xrightarrow{t\frac{1}{2}} \frac{M}{80} \xrightarrow{t\frac{1}{2}} \frac{M}{180}$$

$$\therefore T \cong 3 \times t \frac{1}{2} \text{ to } 4 \times t \frac{1}{2} \cong 450 \text{ to } 600 \text{ S}$$

52.
$$\frac{1}{16} \text{ After } n + t \frac{1}{2} \text{ amount left} = \frac{a}{2^n}$$

$$T = n \times t \frac{1}{2} \quad n = \frac{60}{15} = 4 \therefore \text{ Amount left} = \frac{1}{2^a} = \frac{1}{16}$$

53. 0.63 g
$$T = n \times t \frac{1}{2}n = \frac{96}{24} = 4$$
 : Amount left $= \frac{a}{2^n} = \frac{10}{2^4} = \frac{10}{16} = 0.63$

54.
$$2.8 \times 10^{-4} \,\mathrm{S}^{-1} \,\mathrm{K} = \frac{2.303}{1.386 \times 60 \times 60} \,\log \frac{\mathrm{a}}{\mathrm{a} - 0.75 \,\mathrm{a}} = 2.8 \times 10^{-4} \,\mathrm{S}^{-1}$$

- 55. threshould energy.
- 56. Collision frequency
- 57. Positive Activation energy is always Positive
- 58. Slow
- 59. an increase in the number of activated molecules.
- 60. Threshold Energy Energy of the reactants
- 61. Bimolecular
- 62. $E_f < E_r$
- 63. ΔH of reaction
- 64. more than ΔH

65. lo Kcal mole⁻¹
$$\Delta H = Ea - Ea^r : +5 = 15 - Ea^r : Ea^r = 10$$

66.
$$100 \text{ Kj mole}^{-1} \Delta H = Ea - Ea^{r} - 30 = 70 - Ea^{r} \therefore Ea^{r} = 100$$

- 67. increasing the temperature.
- 68. All the above
- 69. Activation energy and frequency factor.
- 70. 3.2×10^{-4} 10k rise, the velocity constant becomes nearly double.
- 71. 512 Increases of temperature $n \times 10$

Increases reaction rate = 2^9

$$\Delta T = 100 - 10 = 90 = 9 \times 10$$
 : $n = 9$

 \therefore Increases reaction rate = $2^9 = 512$

72. 43.84 Kj mole⁻¹
$$log \frac{K_2}{K_1} = \frac{Ea}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

$$log \frac{0.0693}{0.0231} = \frac{Ea}{2.303 \times 8.3} \left(\frac{320 - 300}{300 \times 320} \right)$$

$$log 3 = \frac{Ea}{1.901} \left(\frac{20}{96000} \right)$$
 $Ea = 43.84$

73. 1.289 times
$$\log \frac{K_2}{K_1} = \frac{\text{Ea.DT}}{2.303 \text{R T}_2 \text{T}_1} = \frac{9000 \times 5}{2.303 \times 2 \times 300 \times 295} = 0.1104$$

$$log \frac{K_2}{K_1} = 0.1104$$
 $\frac{K_2}{K_1} = 1.289$ $K_2 = K_1 \times 1.289$

74.
$$K_1 = K_2 A.e^{E_1/RT}$$
 $K_1 = A_1.e^{-E_1/RT}$ $K_2 = A_2.e^{-E_2/RT}$

$$\frac{K_1}{K_2} = \frac{A_1}{A_2} \times e^{(E_2 - E_1)^{/RT}} = A \cdot e^{(2E_1 - E_1)^{/RT}} = A \cdot e^{E_1/RT}$$

$$\therefore K_1 = K_2.A.e^{E_1/RT}$$

75.
$$\frac{K_1^1}{K_1} > \frac{K_2^1}{K_2} \qquad \log \frac{K_1^1}{K_1} = \frac{E_1}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right] \qquad \log \frac{K_2^1}{K_2} = \frac{E_2}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

Since $E_1 > E_2$

$$\therefore \log \frac{K_1^1}{K_1} \div \log \frac{K_2^1}{K_2} > 1 \quad \text{OR} \quad \frac{K_1^1}{K_1} > \frac{K_2^1}{K_2}$$

- 76. 1 The rate is not depend upon the reactant present in excess
- 77. 1
- 78. K = 100
- 79. is nearly independent of temperature.

$$Ea = 0 : K = A.e^{-Ea/RT} = A.e^{o} = A$$

80.
$$6CO_2 + 6H_2O \xrightarrow{hv} C_6H_{12}O_6 + 6O_2$$

- 81. Mn^{2+}
- 82. $2 2^n = 4 3^n = 9 : n = 2$
- 83.
- 84.
- 85. none of the above

86.
$$N_2O_5 \rightarrow N_2O_4 + \frac{1}{2}O_2$$

87. 2,
$$1\frac{1}{2}$$

litre mole⁻¹ sec⁻¹ 88.

increase four times 89.

90. 4 Rate=
$$K[A]^2$$
: rate= $K[2A]^2$ =4. $K[A]^2$

91. 2, 2
$$CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$$

92.
$$\frac{1}{T}$$

93. third order

94.
$$2K_1[NO_2]^2 - 2K_2[N_2O_4]$$
 For $2NO_2 \xrightarrow{k_1 \longrightarrow k_2} N_2O_4$

Rate =
$$-\frac{1}{2} \frac{d[NO_2]}{dt} = K_1[NO_2]^2 - K_2[N_2O_4]$$

$$\therefore \text{ rate} = \frac{-d[NO_2]}{dt} = 2K_1[NO_2]^2 - 2K_2[N_2O_4]$$

$$K$$

95.

96.

Sec⁻¹ mole⁻¹ L ∴ Second order reaction 97.

98.
$$\frac{16}{1}$$
 Volume of the vessel is reduced to one foreth

Concentration bocomes 4 ttimes

99. become 1.414 times Rate=
$$K[Y][Z]$$

:. New Rate =
$$\sqrt{2}$$
.k[Y][Z]^{1/2} = 1.414 K[Y][Z]^{1/2}

100.
$$2(n-m)$$
 $r^1 = ka^n b^m$ $r^{11} = k(2a)^n \left(\frac{b}{2}\right)^m$

$$\frac{\mathbf{r}^{11}}{\mathbf{r}^{1}} = \frac{2^{n} a^{n} b^{m} a^{-m}}{a^{n} b^{m}} = 2^{n} \cdot 2^{-m} = 2(n - m)$$

101. 0.25 h For Zero order reaction
$$K = \frac{[A]_o}{2t \frac{1}{2}} = \frac{2}{2 \times 1} = 1 \text{ mol } L^{-1} \text{ hr}^{-1}$$

$$t = \frac{[A]_o - [A]}{K} = \frac{0.50 - 0.25}{1} = 0.25 \,\text{hr}$$

102.
$$3.47 \times 10^{-4} \,\mathrm{M \, min^{-1}} \quad K = \frac{2.303}{40} \,\ell \,\mathrm{og} \, \frac{0.1}{0.025} = 0.03466 \,\mathrm{min^{-1}}$$

Rate = $K[A]^1 = 0.03466 \times 0.01 = 3.466 \times 10^{-4} \text{ M min}^{-1}$

103. 490 atm
$$K = \frac{2.303}{t} log \frac{Po}{Pt} : 3.38 \times 10^{-5} = \frac{2.303}{600} log \frac{500}{Pt}$$

$$log \frac{500}{Pt} = 0.0088 \text{ OR } \frac{500}{pt} = 1.021 \text{ OR } pt = 490 \text{ atm}$$

104. 46.06 min
$$K = \frac{0.693}{t_{1/2}^{1/2}} = \frac{0.693}{6.93} = 0.1 \text{ min}^{-1}$$

$$t_{99\%} = \frac{2.303}{k} log \frac{a}{a-x} = \frac{2.303}{0.1} log \frac{a}{a-0.99a}$$

$$=23.03 \log \frac{1}{0.01} = 46.03 \min$$

105.
$$\frac{1000}{2.303}$$
k $k_1 = k_2$ $\therefore 10^{16}$. $e^{-2000/T} = 10^{15}$. $e^{-1000/T}$

$$10.e^{-2000/T} = 1.e^{-1000/T}$$

∴
$$\ell$$
n10 - $\frac{2000}{T}$ = - $\frac{1000}{T}$

$$\therefore 2.303 - \frac{2000}{T} = -\frac{1000}{T}$$

$$\therefore T = -\frac{1000}{2.303} K$$